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Abstract: Considering the generalization of uniqueness of meromorphic functions
of differential monomials, we obtain that if two non-constant meromorphic func-
tions f(2) and g(2) satisfy Ex(1, f*f*) = E,(1, g"g™), where k and n are two posi-

tive integers satisfying k > 3 and n > 2k+9, then either f(2) = c1e%, g(2) = coe™ %,
where ci, ¢y, ¢ are three constants, satisfying (—1)%(cicy)"c?* = 1.
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1. Introduction and Main Results

In this paper, we use the standard notations and terms in the value distribution
theory [1].

Let f(z) be a non constant meromorphic function on the complex plane C.
Define E(a, f) = {z/f(2) — a = 0}, where a zero point with multiplicity m is
counted m times in the set. If there zero points are only counted once, then we
denote the set by E(a, f). Let k be a positive integer. Define
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Ew(a, f) ={2/f(2) —a=0,3 i,1 <i <k, f9(2) # 0}, where a zero point with
multiplicity m is counted m times in the set.

Let f(z) and g(z) be two non constant meromorphic funtions. If E(a, f) =
E(a, g), then we say that f(z) and g(z) share the value CM; if E(a, f) = E(a, g),
then we say that f(z) and g(z) share the value IM.

Additional, we denote by Ny(r, f) the counting function for poles of f(z) with
multiplicity < k, and by Nk) the corresponding one for which multiplicity is not
counted. Let N (r, f) be the counting function for poles of f(z) with multiplicity
> k, and by N(k (r, f) the corresponding one for which multiplicity is not counted.
Set

Ni(r, f) =N(r, f)+ Na(r, f) + — — —+ Ng(r, f).
Similarly, we have the notation: Ny)(r, %),Nk) (, %),N(k(r, %),N(k(r, %),Nk(r, %)
If E(1,f) = E(1,g), we denote by Nyi(r, ﬁ) the counting function for common
simple 1-points of both f(z) and g(z) where multiplicity is not counted.

In 2011, H. Huang and B. Huang [10] extend the above result as follows.
Theorem A. Let f(z) and g(z) be two non-constant meromorphic functions,
k(> 3), n(> 11) be two positive integers. If Ep(1, f"f') = Ex(1,9"q’), then
either fiy = c1e”,g) = ce” %, where c1,co, ¢ are three constants, satisfying
(cre2)"c? = —1, or f =tg for a constant t such that t"™! = 1.

Theorem B. Let f(z) and g(z) be two non constant meromorphic functions,
n(> 13) be a positive integer. If Ex(1, f*f') = E2(1,9"¢'), then the conclusion
of Theorem A holds.

Theorem C. Let f(z) and g(z) be two non constant meromorphic functions,
n(> 19) be a positive integer. If Ei(1, f*f") = Ei(1,9"¢'), then the conclusion
of Theorem A holds.

In this paper, we will extend the above results as follows.

Theorem 1.1. Let f(z) and g(z) be two non-constant meromorphic functions,
k(> 3), n(> 2k 4+ 9) be two positive integers. If Ep(1, frf®)) = E(1, g"g"®), then
either f(z) = c1e,g(z) = cee™%, where ¢y, ¢y, ¢ are three constants, satisfying
(—=1)*(crco)"c®* =1, or f = tg for a constant t such that t"*! = 1.

Theorem 1.2. Let f(z) and g(z) be two non constant meromorphic functions,
n(> 2k + 11) be a positive integer. If Ex(1, frf®)) = Ey(1,g"g®), then the con-
cluston of Theorem 1.1 holds.

Theorem 1.3. Let f(z) and g(z) be two non constant meromorphic functions,
n(> 4k + 15) be a positive integer. If Ey(1, frf®) = Ei(1,g"g®), then the con-
cluston of Theorem 1.1 holds.
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2. Some Lemmas

For the proof of our results, we need the following lemmas.

Lemma 2.1 ([7]). Let f be a non-constant meromorphic function and let ag, ay, ..., a,
be finite complexr numbers such that a, # 0. Then

T(ryanf™+ anaf" "+ .. +arf +ao) =nT(r, f) + S(r, f).

Lemma 2.2 (see[4]). Let f be a non-constant meromorphic functions and a,, as, as
be three distinct small meromorphic functions of f, then

T(r.f) € 30 N2 ) + S0 ).

Lemma 2.3. Let f,g € A,n > 2 and k be a positive integer. If f*f®grgt) =
1, then f = c1e” and g = coe™* where c¢1,co and ¢ are constants such that
(_1)k(clc2)n+102k =1.
Proof. From

frf®grg® =1, (2.1)

we have
f(z) = e, g(2) = ), (2.2)

where «(z) and (z) are non constant entire functions.

Then T'(r, fTI) =T(r, =) = T(r, /). We claim that a(z)+8(z) = ¢, ¢ is a constant.
From (2.2), we know that either a and [ are transcendental functions or both «
and [ are polynomials.

We deduce from (2.2) that

f = [(o)* 4+ Pp_y(a)]e”.

g™ = 18" + Qr-1(8")]e".

where P;_1 (/) and Qy—1 (') are differential polynomials in o and ' of degree at
most (k — 1) respectively. Thus by (2.1) we obtain that

(&) + Prr(@)][(8)* + Qur (B)] ™D =1, (2.3)

we deduce from (2.3) that a(z) + 5(2) = ¢, ¢ is a constant.
If k=1, from (2.2) we get,

of flemtieth) — 1. (2.4)
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Let « + 8 = v. If @ and 8 are transcendental entire functions, then ~ is not a
constant and (2.4) implies that
o () —a et = 1, (2.5)

Since

T(r,y') =m(r,y") =m

Thus (2.5) implies that

__
/(v — o)
<T(r,a'(y = a')) +0(1)
< 2T(r,a’) + S(r, ™)),

T(r,emD7) = T(r,

Which implies that
T(r,e™™D7) = O(T(r,)).
Thus T'(r,~") = S(r,d/). In view of (2.5) and by Lemma 2.2, we get
_ - 1 - 1
T(’I",o/) < N(’l“,o/) +N(7“,—) —{—N(’f’,m

Oél
Since a and (3 are transcendental entire function and in view of (2.5), we obtain
T(r,a") < S(r,o) and this implies that o is a constant, which is a contradiction.
Thus a and § are both polynomials and a(z) + 8(z) = ¢, for a constant c.
Hence from (2.3), we get

)+ S(r,a).

(@)% =1+ Py (o), (2.6)

where Py,_1(a/) is a differential polynomial in o/ of degree at most (2k — 1). From
(2.6), we have

2kT(r, ) = T(r, (a/)**) = m(r, (&/)?*) < m(r, Py_1(c/)) + O(1)

I & T 1O e
- ( ’ (&/)Qkfl ( ) )+O(1)

< mf(r, }ZZC,_)—;E?;)) +m(r, (&)1 + 0(1)

<2k —1T(r,a') + S(r, o).
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Therefore T'(r, ') < S(r,a’). Which implies that o’ is a constant. Thus o = cz+¢y,
B = —cz+ cy. By (2.2), we represent f and g as f = ;e and g = cpe” .
Where c;, c; and ¢ are constants such that (—1)*(cicp)"1e? = 1.

This completes the proof of Lemma.

Lemma 2.4 ([8]). Let f be a non constant meromorphic function, k a positive
integer, then

,f@)SNW%%+MWnﬂ+SVJ)

Lemma 2.5 ([9]). Let f and g be two non-constant meromorphic functions, and
let k be a positive integer. If Ex(1, f) = Ex(1,g), then one of the following cases
must occur:

T(r, f) + T(r, g) < No(r, f) + Na(r, %) + Nalr, g) + Na(r, é)
_ _ 1 1
+N2(T,f_1)+N2(7‘ag_1)—N11(7‘»f_1) (2.7)
# N 7) + N (r. =) + 500 ) + 5. 9)
o (b—i—l)g—l—(a—b—l)7 2.8)

bg + (a —b)
where a(# 0),b are two constants.

Lemma 2.6. Let f and g be two non constant meromorphic functions, n > 2k +5
be a positive integer. Set

F=ff® Gg=gg® =1,

b+1D)G+(a—b—-1)
bG + (a —b) ’

f= (2.9)
where a(#£ 0),b are two constants, then f(z) = c1e%, g(z) = coe”™, where ¢y, ¢, ¢
are three constants, satisfying (—1)*(cicy)"c®* =1,

Proof. By Lemma 2.1, we get

T(r, F) =T(r, f"f¥) < T(r, f*) + T(r, f*)
<nT(r, f) +T(r, f) + S f) (2.10)
< (n+DT(r, f)+5(r, f),
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nT(r, f) = T(r. ") + S(r. f)
= N(r. ")+ m(r, %) + S(r, )
< N(r ") = NG f9) + mlr, £ £9) + mN(r, ) + (1, f)
f (2.11)

1
— N ) + 50 f)

) —kN(r, f) + S(r, f).

<T(r, frf®) + T(r, f®) = N(r, f®

<T(r,F)4+T(r,f)— N(r,f) — N(r,

Khl’_‘ ~—r

So
T(r,F)>(n—1)T(r,f)+ N(r, f)+ N(r, %) +EN(r, f)+ S(r, f). (2.12)

Thus, by (2.10) and (2.11), we get
S(r, F) = 5(r, f).

Similarly, we get
1 —
T(r,G) 2 (n—1)T(r,g) + N(r,g) + N(r, 5) +kN(r,g) + S(r,g).  (2.13)

Also S(r,G) = S(r,g). It is clear that the inequality T'(r, f) < T'(r,g) or T(r,g) <
T'(r, f) holds for a set of infinite measure of r. Without loss of generality, we may
suppose that T'(r, f) < T(r,g), holds for r € I, where I is a set with infinite
measure. Next we consider five cases.

Case 1. a #b,b#0,—1. If a — b — 1 # 0, then by (2.9) we known:

Nr. %) _N(r

1

)
G+ b+1

By the Nevanlinna second fundamental theorem and Lemma 2.4, we have

1 — 1

T(r,G)ﬁN(T,G)—i-N(T,E)—i-N( ))—I—S(T,G)

7"’ —
’ (a—b—1
G+ b+1

r,é) +N(r,%) +S(r,g)
— 1 1 — 1 1
(T,g)+N(T,§)+N(T,W)+N(T,?)+N(T7W)+S(7‘,g)

I
=

(r,G) + N(

=l

<
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1

SN(T,g)—FW(,g)—i—N(T, )+ EN(r,g) + N(r,=) +

NG, §> KN f) + S(r,g)
N(r é) N, %) 1 5(r.g)

1
g
< (k+ )N (r,g) + N(r, §> LN é) KN f)

<(k+3)T(r,9)+ (k+2)T(r, f)+ S(r,g).

Iy,
f
+

By n > 2k + 5 and (2.13), we get T'(r,g) < S(r,g), for r € I, a contradiction. If

a—b—1=0, by (2.9) we can obtain F' = % we see that:
NG, F) = N(r, ——)
r,F) = N(r
7 Y G + % Y

combining the Nevanlinna second fundamental theorem and Lemma 2.4, we have

T(r.G) < N(r,G) + (l)+N(r,G1

)+ S(r,G)

1
b

I
=

(r.G) + N(r, é)

(r.9) + N 0) + NG, 5) + N (1. 1) + S(r.9)

+ N(r,F)+S(r, 9)

IA
=

IN
QIP—‘Q

N(r,g) + N(r, é) + N(r,=)+kN(r,g) + N(r, f) + S(r, g)
< (k+3)T'(r,g) +T(r, f) +S(r,9).

By n > (2k 4+ 5) and (2.13), we get T'(r,g) < S(r,g),r € I a contradiction.

Case 2. a # b,b # —1. So F' = -5 We can get N(r,F) = N(r,ﬁ).
Similarly as Case 1, it is impossible.

Case 3. a #b,b#0.S0 F = U 1f g1 = 0, then F = G, So ff*) = gng®.
Case 4. a # b,b # 0, —1, from (2.9) we can get F' = %, N(r,F)=N(r, ).
Similarly as Case 1, it is impossible. Since a # 0, now we consider the following
case.

Case 5. a = b= —1, it yields FG = 1, that is f"f*g¢*¢*) = 1. By the Lemma
2.3, we can get f(2) = c1e(®, g(2) = (7%, where ¢y, ¢z, ¢ are three constants
satisfying (—1)%(cic2)" ™ c® = 1. Now the proof of Lemma 2.6 is completed.
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3. Proof of the Theorems
Proof of Theorem 1.1. Noticing that & > 3, we have

<

By Lemma 2.5, we can get

1

T(TF)+T(TG)<2( 5(r, =) + Na(r, F) + No(r, l)—i—Ng(rG))

G

yal
+ S(r, F)+ S(r,G) (3.1)
1) ’

2 (it L
+S(r, f)+ S

+ No(r, F) + Na(r, é) + No(r, G))

(r, ).

Because

1 1
NQ(T>F)+N2(T7F)§ ( fnf )+N2( 7fnf(k))
1
, =)+ N(r, —
7N

1 — 1 1 —
NQ(T, 5) + NQ(T, G) < 2N(7’, 5) + N(’T’, W)
By (3.1)-(3.3) and Lemma 2.4, we can get

(3.2)

IN

2N (r

and

T(r,F)+T(r,G) <2 <2N(r, %) 2N(r, f) + N(r, %) + 2N (r,
1

+ N(r, W) + S(r, f)+ S(r,g)

+
[\

E
=

%) 50 )

)+ S(rg)

I
S
E'

) +4N(r, f) + 2N (r,

+
S
E

) +4N(r, g) + 2N(r,

IA
W
§|
Q

)+ 4N(r, f)+2{N( )+ EN(r, f)| +S(r, f)

| =
%IH
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— 1 — 1 —
+4N(T,§)+4N(T,g>+2 N(T,;)—Fk’N(’F,g) +S(T>g)>

we write the above equation as

T(r,F)+T(r,G) <4N(r ,%) +4N(r, f) +2N(r, %) +2kN(r, f) + S(r, f)
+ AN, $)+4N(r g) + 2N (r, §)+ N(r,g) + S(r, g)
< (2k+10)T(r, f) + (2k +10)T(r, g) + S(r, f) + S(r,g)
(n+D[T(r, f)+T(r,9)] < 2k +10)[T(r, f) +T(r,g)] + S(r, f) + S(r, 9)
(n =2k =9)(T(r, f) +T(r,g9)) < S(r, f) + S(r, ).

By n > 2k + 9 and (2.12),(2.13) we obtain T'(r, f) + T'(r,g9) < S(r, f) + S(r, g),
which is impossible. Therefore, by Lemma 2.5

(b+1)g+(a—b—a)
bg + (a —b)

f=

Y

where a(# 0), b are two constants, it follows by Lemma 2.6 that f(z) = c1e(®®), g(2) =
cpel=%) | where ¢y, ¢y, ¢ are three constants satisfying (—1)%(cicy)" ' c? = 1.

The proof of Theorem 1.1 is complete.

Proof of Theorem 1.2. We can see easily:

N(r,

_l’_
=
=

+
| —
E
?

IA
M| — N

By Lemma 2.5, we can get

1 1
T(r,F)+T(r,G) <2 |Ny(r, f) + No(r, F') + No(r, 5) + No(r, G)

Y+ S(r, f)+ S(r,g).

(3.4)

— 1 —
+N(3(T,F_1)+N(3<7’,G_1
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Considering
— 1 1 F 1 F’
N(3(T7 F— 1) < §N(T7F> - _N(TJF) +S(T7f)
1— 1 1—
S?N( F1)+2N(T1F)+S(r 1) (3.5)
< 5[N(r, ?)+N(T ?)+N( I+ S, )
<2T(r, f) + S(r, f).
Similarly, we can get
Nialr, ) < 270, )+ 501 (3.
From (3.4)-(3.6) we can get
1 1
T F) 4 T(1,G) < 2 | Nalr 7o) 4 Nalr £ 50) 4 Mol ) 4 Mol )

+ 27 (r, f) 4 2T(r, g) + S(r f)+S(r,9)

r,l)—l-N( )+2N(rf)+2N(r 3)%—]\7(

f f<’“
+2T(r, f) + 2T(r, g) + S(r, f) + S(r, g),

<2 [QN(

T(r,F)+T(r,G) < 4N(r, %) +2N(r, —5) + AN(r, f) +4N(r,~)

7

+ 2N(r, ﬁ) +4N(r,g) +2T(r, f) + 2T (r, g) + S(r, f) + S(r,

< 4N(r, %) + 2N(r, %) +2kN(r, f) +4N(r, f) + 4N(r, é)

+ 2N(r, g) +2kN(r,g) +4N(r,g) + 2T (r, f) +2T(r,g) + S(r, f) + S(r, g)

!
g
9)

<2k +12)T(r, f)+ 2k +12)T(r, g) + S(r, f) + S(r, 9)
(n+D[T(r, f)+T(r,9)] < 2k +12)[T(r, f) +T(r,g)] + S(r, f) + S(r, g)
(n—2k =11)[T(r, f) + T(r,9)] < S(r, f) + S(r, 9).

By n > 2k + 11 and (2.12),(2.13), we can get T'(r, f) + T(r,g) < S(r, f) + S(r, 9)
it is impossible.
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The proof of Theorem 1.2 is complete.
Proof of Theorem 1.3. Since

— 1 — 1 1
N

We can see easily from Lemma 2.5 that:

T(r,F)+T(r,G) <2 [Ng(?“, %) + No(r, F) + Na(r, é) + No(r, G)+

1 — 1
N(Q(T, ﬁ) + N(Q(T‘, m):| + S(T, F) + S(’I", G)

_9 {Ng(r, =) Nalr, F) o Nalr, )+ Nalr, G+ o
Na(r, 7 1_ 1) + Nao(r, oo 1)} + S(r, f) +S(r, g).
Considering
Nalr, ) < Nr.20) = NG o) + 500, 1)
< N(r,F)+ N(r, —) + S(r, f) (3.8)
< N 5) + N ) + N )+ 5021)
< (k+3)T(r )+ S(r, f).
Similarly we can get
Na(r, 5 1_ 1) < (k+3)T(r,g) + S(r,9), (3.9)

from (3.7)-(3.9) we can get

T(r,F)+T(r,G) <2[2N(r )

l) + N(r, %) +2N(r, f) + 2N(r, é) + N(r, J

f f
+2N(r,g) + (k+3)T(r, f) + (k+3)T(r,g)] + S(r, f) + S(r,9)
< (4k +16)T(r, f) + (4k + 16)T'(r,g) + S(r, f) + S(r, g)

(n+ D[T(r, f) +T(r,9)] < (4k +16)[T(r, f) + T(r,g)] + S(r, f) + S(r,9)
(n—4k = 15)[T'(r, f) + T(r, g)] < S(r, f) + S(r,9).
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Since n > 4k+16 and (2.12), (2.13), we can get T'(r, f)+T'(r,g) < S(r, f)+S(r, 9),
it is impossible.
The proof of Theorem 1.3 is complete.
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