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Abstract: Considering the generalization of uniqueness of meromorphic functions
of differential monomials, we obtain that if two non-constant meromorphic func-
tions f(z) and g(z) satisfy Ek(1, f

nf (k)) = Ek(1, g
ng(k)), where k and n are two posi-

tive integers satisfying k ≥ 3 and n ≥ 2k+9, then either f(z) = c1e
cz, g(z) = c2e

−cz,
where c1, c2, c are three constants, satisfying (−1)k(c1c2)

nc2k = 1.
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1. Introduction and Main Results
In this paper, we use the standard notations and terms in the value distribution

theory [1].
Let f(z) be a non constant meromorphic function on the complex plane C.

Define E(a, f) = {z/f(z) − a = 0}, where a zero point with multiplicity m is
counted m times in the set. If there zero points are only counted once, then we
denote the set by E(a, f). Let k be a positive integer. Define
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Ek(a, f) = {z/f(z) − a = 0,∃ i, 1 ≤ i ≤ k, f (i)(z) 6= 0}, where a zero point with
multiplicity m is counted m times in the set.

Let f(z) and g(z) be two non constant meromorphic funtions. If E(a, f) =
E(a, g), then we say that f(z) and g(z) share the value CM; if E(a, f) = E(a, g),
then we say that f(z) and g(z) share the value IM.

Additional, we denote by Nk)(r, f) the counting function for poles of f(z) with
multiplicity ≤ k, and by Nk) the corresponding one for which multiplicity is not
counted. Let N(k(r, f) be the counting function for poles of f(z) with multiplicity
≥ k, and by N (k(r, f) the corresponding one for which multiplicity is not counted.
Set

Nk(r, f) = N(r, f) +N (2(r, f) +−−−+N (k(r, f).

Similarly, we have the notation: Nk)(r,
1
f
), Nk)(r,

1
f
), N(k(r,

1
f
), N (k(r,

1
f
), Nk(r,

1
f
).

If Ē(1, f) = Ē(1, g), we denote by N11(r,
1

f−1) the counting function for common

simple 1-points of both f(z) and g(z) where multiplicity is not counted.
In 2011, H. Huang and B. Huang [10] extend the above result as follows.

Theorem A. Let f(z) and g(z) be two non-constant meromorphic functions,
k(≥ 3), n(≥ 11) be two positive integers. If Ek(1, f

nf ′) = Ek(1, g
ng′), then

either f(z) = c1e
cz, g(z) = c2e

−cz, where c1, c2, c are three constants, satisfying
(c1c2)

n+1c2 = −1, or f = tg for a constant t such that tn+1 = 1.

Theorem B. Let f(z) and g(z) be two non constant meromorphic functions,
n(≥ 13) be a positive integer. If E2(1, f

nf ′) = E2(1, g
ng′), then the conclusion

of Theorem A holds.

Theorem C. Let f(z) and g(z) be two non constant meromorphic functions,
n(≥ 19) be a positive integer. If E1(1, f

nf ′) = E1(1, g
ng′), then the conclusion

of Theorem A holds.
In this paper, we will extend the above results as follows.

Theorem 1.1. Let f(z) and g(z) be two non-constant meromorphic functions,
k(≥ 3), n(≥ 2k + 9) be two positive integers. If Ek(1, f

nf (k)) = Ek(1, g
ng(k)), then

either f(z) = c1e
cz, g(z) = c2e

−cz, where c1, c2, c are three constants, satisfying
(−1)k(c1c2)

nc2k = 1, or f = tg for a constant t such that tn+1 = 1.

Theorem 1.2. Let f(z) and g(z) be two non constant meromorphic functions,
n(≥ 2k + 11) be a positive integer. If E2(1, f

nf (k)) = E2(1, g
ng(k)), then the con-

clusion of Theorem 1.1 holds.

Theorem 1.3. Let f(z) and g(z) be two non constant meromorphic functions,
n(≥ 4k + 15) be a positive integer. If E1(1, f

nf (k)) = E1(1, g
ng(k)), then the con-

clusion of Theorem 1.1 holds.
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2. Some Lemmas
For the proof of our results, we need the following lemmas.
Lemma 2.1 ([7]). Let f be a non-constant meromorphic function and let a0, a1, ..., an
be finite complex numbers such that an 6= 0. Then

T (r, anf
n + an−1f

n−1 + ...+ a1f
′ + a0) = nT (r, f) + S(r, f).

Lemma 2.2 (see[4]). Let f be a non-constant meromorphic functions and a1, a2, a3
be three distinct small meromorphic functions of f, then

T (r, f) ≤
3∑
j=1

N̄(r,
1

f − aj
) + S(r, f).

Lemma 2.3. Let f, g ∈ A, n ≥ 2 and k be a positive integer. If fnf (k)gng(k) =
1, then f = c1e

cz and g = c2e
−cz where c1, c2 and c are constants such that

(−1)k(c1c2)
n+1c2k = 1.

Proof. From
fnf (k)gng(k) = 1, (2.1)

we have
f(z) = eα(z), g(z) = eβ(z), (2.2)

where α(z) and β(z) are non constant entire functions.
Then T (r, f

′

f
) = T (r, e

αα′

eα
) = T (r, α′). We claim that α(z)+β(z) = c, c is a constant.

From (2.2), we know that either α and β are transcendental functions or both α
and β are polynomials.
We deduce from (2.2) that

f (k) = [(α′)k + Pk−1(α
′)]eα.

g(k) = [(β′)k +Qk−1(β
′)]eβ.

where Pk−1(α
′) and Qk−1(β

′) are differential polynomials in α′ and β′ of degree at
most (k − 1) respectively. Thus by (2.1) we obtain that

[(α′)k + Pk−1(α
′)][(β′)k +Qk−1(β

′)]e(n+1)(α+β) = 1, (2.3)

we deduce from (2.3) that α(z) + β(z) = c, c is a constant.
If k = 1, from (2.2) we get,

α′β′e(n+1)(α+β) = 1. (2.4)
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Let α + β = γ. If α and β are transcendental entire functions, then γ is not a
constant and (2.4) implies that

α′(γ′ − α′)e(n+1)γ = 1. (2.5)

Since

T (r, γ′) = m(r, γ′) = m(r,
e(n+1)γ′

e(n+1)γ
γ′)

= m(r,
(e(n+1)γ)′

e(n+ 1)γ
) = S(r, e(n+1)γ).

Thus (2.5) implies that

T (r, e(n+1)γ) = T (r,
1

α′(γ′ − α′)
)

≤ T (r, α′(γ′ − α′)) +O(1)

≤ 2T (r, α′) + S(r, e(n+1)γ).

Which implies that
T (r, e(n+1)γ) = O(T (r, α′)).

Thus T (r, γ′) = S(r, α′). In view of (2.5) and by Lemma 2.2, we get

T (r, α′) ≤ N̄(r, α′) + N̄(r,
1

α′
) + N̄(r,

1

(γ′ − α′)
) + S(r, α′).

Since α and β are transcendental entire function and in view of (2.5), we obtain
T (r, α′) ≤ S(r, α′) and this implies that α′ is a constant, which is a contradiction.
Thus α and β are both polynomials and α(z) + β(z) = c, for a constant c.

Hence from (2.3), we get

(α′)2k = 1 + P2k−1(α
′), (2.6)

where P2k−1(α
′) is a differential polynomial in α′ of degree at most (2k− 1). From

(2.6), we have

2kT (r, α′) = T (r, (α′)2k) = m(r, (α′)2k) ≤ m(r, P2k−1(α
′)) +O(1)

= m(r,
P2k−1(α

′)

(α′)2k−1
(α′)2k−1) +O(1)

≤ m(r,
P2k−1(α

′)

(α′)2k−1
) +m(r, (α′)2k−1) +O(1)

≤ 2k − 1T (r, α′) + S(r, α′).
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Therefore T (r, α′) ≤ S(r, α′). Which implies that α′ is a constant. Thus α = cz+c1,
β = −cz + c2. By (2.2), we represent f and g as f = c1e

cz and g = c2e
−cz.

Where c1, c2 and c are constants such that (−1)k(c1c2)
n+1c2k = 1.

This completes the proof of Lemma.

Lemma 2.4 ([8]). Let f be a non constant meromorphic function, k a positive
integer, then

N(r,
1

f (k)
) ≤ N(r,

1

f
) + kN̄(r, f) + S(r, f).

Lemma 2.5 ([9]). Let f and g be two non-constant meromorphic functions, and
let k be a positive integer. If Ek(1, f) = Ek(1, g), then one of the following cases
must occur:

T (r, f) + T (r, g) ≤ N2(r, f) +N2(r,
1

f
) +N2(r, g) +N2(r,

1

g
)

+N2(r,
1

f − 1
) +N2(r,

1

g − 1
)−N11(r,

1

f − 1
)

+N(k+1(r,
1

f − 1
) +N(k+1(r,

1

g − 1
) + S(r, f) + S(r, g).

(2.7)

f =
(b+ 1)g + (a− b− 1)

bg + (a− b)
, (2.8)

where a( 6= 0), b are two constants.

Lemma 2.6. Let f and g be two non constant meromorphic functions, n ≥ 2k+ 5
be a positive integer. Set

F = fnf (k) G = gng(k) = 1,

if

f =
(b+ 1)G+ (a− b− 1)

bG+ (a− b)
, (2.9)

where a(6= 0), b are two constants, then f(z) = c1e
cz, g(z) = c2e

−cz, where c1, c2, c
are three constants, satisfying (−1)k(c1c2)

nc2k = 1,
Proof. By Lemma 2.1, we get

T (r, F ) = T (r, fnf (k)) ≤ T (r, fn) + T (r, f (k))

≤ nT (r, f) + T (r, f) + S(r, f)

≤ (n+ 1)T (r, f) + S(r, f),

(2.10)
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nT (r, f) = T (r, fn) + S(r, f)

= N(r, fn) +m(r, fn) + S(r, f)

≤ N(r, fnf (k))−N(r, f (k)) +m(r, fnf (k)) +mN(r,
1

f (k)
) + S(r, f)

≤ T (r, fnf (k)) + T (r, f (k))−N(r, f (k))−N(r,
1

f (k)
) + S(r, f)

≤ T (r, F ) + T (r, f)−N(r, f)−N(r,
1

f
)− kN(r, f) + S(r, f).

(2.11)

So

T (r, F ) ≥ (n− 1)T (r, f) +N(r, f) +N(r,
1

f
) + kN(r, f) + S(r, f). (2.12)

Thus, by (2.10) and (2.11), we get

S(r, F ) = S(r, f).

Similarly, we get

T (r,G) ≥ (n− 1)T (r, g) +N(r, g) +N(r,
1

g
) + kN(r, g) + S(r, g). (2.13)

Also S(r,G) = S(r, g). It is clear that the inequality T (r, f) ≤ T (r, g) or T (r, g) ≤
T (r, f) holds for a set of infinite measure of r. Without loss of generality, we may
suppose that T (r, f) ≤ T (r, g), holds for r ∈ I, where I is a set with infinite
measure. Next we consider five cases.
Case 1. a 6= b, b 6= 0,−1. If a− b− 1 6= 0, then by (2.9) we known:

N(r,
1

F
) = N(r,

1

G+ (a−b−1)
b+1

).

By the Nevanlinna second fundamental theorem and Lemma 2.4, we have

T (r,G) ≤ N(r,G) +N(r,
1

G
) +N(r,

1

G+ (a−b−1)
b+1

) + S(r,G)

= N(r,G) +N(r,
1

G
) +N(r,

1

F
) + S(r, g)

≤ N(r, g) +N(r,
1

g
) +N(r,

1

g(k)
) +N(r,

1

f
) +N(r,

1

f (k)
) + S(r, g)
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≤ N(r, g) +N(r,
1

g
) +N(r,

1

g
) + kN(r, g) +N(r,

1

f
) +N(r,

1

f
) + kN(r, f) + S(r, g)

≤ (k + 1)N(r, g) +N(r,
1

g
) +N(r,

1

g
) + kN(r, f) +N(r,

1

f
) +N(r,

1

f
) + S(r, g)

≤ (k + 3)T (r, g) + (k + 2)T (r, f) + S(r, g).

By n ≥ 2k + 5 and (2.13), we get T (r, g) ≤ S(r, g), for r ∈ I, a contradiction. If

a− b− 1 = 0, by (2.9) we can obtain F = (b+1)G
bG+1

we see that:

N(r, F ) = N(r,
1

G+ 1
b

),

combining the Nevanlinna second fundamental theorem and Lemma 2.4, we have

T (r,G) ≤ N(r,G) +N(r,
1

G
) +N(r,

1

G+ 1
b

) + S(r,G)

= N(r,G) +N(r,
1

G
) +N(r, F ) + S(r, g)

≤ N(r, g) +N(r,
1

g
) +N(r,

1

g(k)
) +N(r, f) + S(r, g)

≤ N(r, g) +N(r,
1

g
) +N(r,

1

g
) + kN(r, g) +N(r, f) + S(r, g)

≤ (k + 3)T (r, g) + T (r, f) + S(r, g).

By n ≥ (2k + 5) and (2.13), we get T (r, g) ≤ S(r, g), r ∈ I a contradiction.
Case 2. a 6= b, b 6= −1. So F = a

(a+1)−G . We can get N(r, F ) = N(r, 1
G−(a+1)

).
Similarly as Case 1, it is impossible.
Case 3. a 6= b, b 6= 0. So F = G+(a−1)

a
. If a−1 = 0, then F ≡ G, So fnf (k) = gng(k).

Case 4. a 6= b, b 6= 0,−1, from (2.9) we can get F = (b+1)G−1
bG

, N(r, F ) = N(r, 1
G

).
Similarly as Case 1, it is impossible. Since a 6= 0, now we consider the following
case.
Case 5. a = b = −1, it yields FG ≡ 1, that is fnf (k)gng(k) = 1. By the Lemma
2.3, we can get f(z) = c1e

(cz), g(z) = c2e
(−cz), where c1, c2, c are three constants

satisfying (−1)k(c1c2)
n+1c2k = 1. Now the proof of Lemma 2.6 is completed.
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3. Proof of the Theorems
Proof of Theorem 1.1. Noticing that k ≥ 3, we have

N(r,
1

F − 1
) +N(r,

1

G− 1
)−N11(r,

1

F − 1
) +N (k+1(r,

1

F − 1
)

+N (k+1(r,
1

G− 1
) ≤ 1

2
N(r,

1

F − 1
) +

1

2
N(r,

1

G− 1
)

≤ 1

2
T (r, F ) +

1

2
T (r,G) +O(1).

By Lemma 2.5, we can get

T (r, F ) + T (r,G) < 2

(
N2(r,

1

F
) +N2(r, F ) +N2(r,

1

G
) +N2(r,G)

)
+ S(r, F ) + S(r,G)

= 2

(
N2(r,

1

F
) +N2(r, F ) +N2(r,

1

G
) +N2(r,G)

)
+ S(r, f) + S(r, g).

(3.1)

Because

N2(r,
1

F
) +N2(r, F ) ≤ N2(r,

1

fnf (k)
) +N2(r, f

nf (k))

≤ 2N(r,
1

f
) +N(r,

1

f (k)
) + 2N(r, f),

(3.2)

and

N2(r,
1

G
) +N2(r,G) ≤ 2N(r,

1

g
) +N(r,

1

g(k)
) + 2N(r, g). (3.3)

By (3.1)-(3.3) and Lemma 2.4, we can get

T (r, F ) + T (r,G) ≤ 2

(
2N(r,

1

f
) + 2N(r, f) +N(r,

1

f (k)
) + 2N(r,

1

g
)

+2N(r, g) +N(r,
1

g(k)

)
+ S(r, f) + S(r, g)

= 4N(r,
1

f
) + 4N(r, f) + 2N(r,

1

f (k)
) + S(r, f)

+ 4N(r,
1

g
) + 4N(r, g) + 2N(r,

1

g(k)
) + S(r, g)

≤ 4N(r,
1

f
) + 4N(r, f) + 2

[
N(r,

1

f
) + kN(r, f)

]
+ S(r, f)
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+ 4N(r,
1

g
) + 4N(r, g) + 2

[
N(r,

1

g
) + kN(r, g)

]
+ S(r, g),

we write the above equation as

T (r, F ) + T (r,G) ≤ 4N(r,
1

f
) + 4N(r, f) + 2N(r,

1

f
) + 2kN(r, f) + S(r, f)

+ 4N(r,
1

g
) + 4N(r, g) + 2N(r,

1

g
) + 2kN(r, g) + S(r, g)

≤ (2k + 10)T (r, f) + (2k + 10)T (r, g) + S(r, f) + S(r, g)

(n+ 1)[T (r, f) + T (r, g)] ≤ (2k + 10)[T (r, f) + T (r, g)] + S(r, f) + S(r, g)

(n− 2k − 9)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g).

By n ≥ 2k + 9 and (2.12),(2.13) we obtain T (r, f) + T (r, g) ≤ S(r, f) + S(r, g),
which is impossible. Therefore, by Lemma 2.5

f =
(b+ 1)g + (a− b− a)

bg + (a− b)
,

where a(6= 0), b are two constants, it follows by Lemma 2.6 that f(z) = c1e
(cz), g(z) =

c2e
(−cz), where c1, c2, c are three constants satisfying (−1)k(c1c2)

n+1c2k = 1.
The proof of Theorem 1.1 is complete.
Proof of Theorem 1.2. We can see easily:

N(r,
1

F − 1
) +N(r,

1

G− 1
)−N11(r,

1

F − 1
) +

1

2
N (2(r,

1

F − 1
)

+
1

2
N (2(r,

1

G− 1
) ≤ 1

2
N(r,

1

F − 1
) +

1

2
N(r,

1

G− 1
)

≤ 1

2
T (r, F ) +

1

2
T (r,G) + S(r, f) + S(r, g).

By Lemma 2.5, we can get

T (r, F ) + T (r,G) ≤ 2

[
N2(r,

1

F
) +N2(r, F ) +N2(r,

1

G
) +N2(r,G)

]
+N (3(r,

1

F − 1
) +N (3(r,

1

G− 1
) + S(r, f) + S(r, g).

(3.4)
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Considering

N (3(r,
1

F − 1
) ≤ 1

2
N(r,

F

F ′
) =

1

2
N(r,

F ′

F
) + S(r, f)

≤ 1

2
N(r,

1

F
) +

1

2
N(r, F ) + S(r, f)

≤ 1

2
[N(r,

1

f
) +N(r,

1

f
) +N(r, f)] + S(r, f)

≤ 2T (r, f) + S(r, f).

(3.5)

Similarly, we can get

N (3(r,
1

F − 1
) ≤ 2T (r, f) + S(r, f). (3.6)

From (3.4)-(3.6) we can get

T (r, F ) + T (r,G) ≤ 2

[
N2(r,

1

fnf (k)
) +N2(r, f

nf (k)) +N2(r,
1

gng(k)
) +N2(r, g

ng(k))

]

+ 2T (r, f) + 2T (r, g) + S(r, f) + S(r, g)

≤ 2

[
2N(r,

1

f
) +N(r,

1

f (k)
) + 2N(r, f) + 2N(r,

1

g
) +N(r,

1

g(k)
) + 2N(r, g)

]
+ 2T (r, f) + 2T (r, g) + S(r, f) + S(r, g),

T (r, F ) + T (r,G) ≤ 4N(r,
1

f
) + 2N(r,

1

f (k)
) + 4N(r, f) + 4N(r,

1

g
)

+ 2N(r,
1

g(k)
) + 4N(r, g) + 2T (r, f) + 2T (r, g) + S(r, f) + S(r, g)

≤ 4N(r,
1

f
) + 2N(r,

1

f
) + 2kN(r, f) + 4N(r, f) + 4N(r,

1

g
)

+ 2N(r,
1

g
) + 2kN(r, g) + 4N(r, g) + 2T (r, f) + 2T (r, g) + S(r, f) + S(r, g)

≤ (2k + 12)T (r, f) + (2k + 12)T (r, g) + S(r, f) + S(r, g)

(n+ 1)[T (r, f) + T (r, g)] ≤ (2k + 12)[T (r, f) + T (r, g)] + S(r, f) + S(r, g)

(n− 2k − 11)[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g).

By n ≥ 2k + 11 and (2.12),(2.13), we can get T (r, f) + T (r, g) ≤ S(r, f) + S(r, g)
it is impossible.
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The proof of Theorem 1.2 is complete.
Proof of Theorem 1.3. Since

N(r,
1

F − 1
) +N(r,

1

G− 1
)−N11(r,

1

F − 1
) ≤ 1

2
N(r,

1

F − 1
) +

1

2
N(r,

1

G− 1
)

≤ 1

2
T (r, F ) +

1

2
T (r,G) + S(r, f) + S(r, g).

We can see easily from Lemma 2.5 that:

T (r, F ) + T (r,G) ≤ 2

[
N2(r,

1

F
) +N2(r, F ) +N2(r,

1

G
) +N2(r,G)+

N (2(r,
1

F − 1
) +N (2(r,

1

G− 1
)

]
+ S(r, F ) + S(r,G).

= 2

[
N2(r,

1

F
) +N2(r, F ) +N2(r,

1

G
) +N2(r,G)+

N (2(r,
1

F − 1
) +N (2(r,

1

G− 1
)

]
+ S(r, f) + S(r, g).

(3.7)

Considering

N (2(r,
1

F − 1
) ≤ N(r,

F

F ′
) = N(r,

F ′

F
) + S(r, f)

≤ N(r, F ) +N(r,
1

F
) + S(r, f)

≤ N(r,
1

f
) +N(r,

1

f (k)
) +N(r, f) + S(r, f)

≤ (k + 3)T (r, f) + S(r, f).

(3.8)

Similarly we can get

N (2(r,
1

G− 1
) ≤ (k + 3)T (r, g) + S(r, g), (3.9)

from (3.7)-(3.9) we can get

T (r, F ) + T (r,G) ≤ 2[2N(r,
1

f
) +N(r,

1

f (k)
) + 2N(r, f) + 2N(r,

1

g
) +N(r,

1

g(k)
)

+ 2N(r, g) + (k + 3)T (r, f) + (k + 3)T (r, g)] + S(r, f) + S(r, g)

≤ (4k + 16)T (r, f) + (4k + 16)T (r, g) + S(r, f) + S(r, g)

(n+ 1)[T (r, f) + T (r, g)] ≤ (4k + 16)[T (r, f) + T (r, g)] + S(r, f) + S(r, g)

(n− 4k − 15)[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g).
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Since n ≥ 4k+16 and (2.12), (2.13), we can get T (r, f)+T (r, g) ≤ S(r, f)+S(r, g),
it is impossible.
The proof of Theorem 1.3 is complete.
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