South East Asian J. of Mathematics and Mathematical Sciences Vol. 16, No. 1 (2020), pp. 123-134

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

UNIQUENESS AND ITS GENERALIZATION OF MEROMORPHIC FUNCTIONS CONCERNING DIFFERENTIAL POLYNOMIALS

Rajeshwari S. and Naveen Kumar S. H.*

Department of Mathematics, School of Engineering, Presidency University, Bangalore-560 064, INDIA

E-mail: rajeshwari.s@presidencyuniversity.in, rajeshwaripreetham@gmail.com

*Department of Mathematics, Gitam School of Technology, Gitam Bangalore-562163, INDIA

E-mail: naveenkumarsh.220@gmail.com

(Received: Jan. 16, 2020 Accepted: Feb. 05, 2020 Published: Apr. 30, 2020)

Abstract: Considering the generalization of uniqueness of meromorphic functions of differential monomials, we obtain that if two non-constant meromorphic functions f(z) and g(z) satisfy $E_k(1, f^n f^{(k)}) = E_k(1, g^n g^{(k)})$, where k and n are two positive integers satisfying $k \geq 3$ and $n \geq 2k+9$, then either $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$, where c_1, c_2, c are three constants, satisfying $(-1)^k (c_1 c_2)^n c^{2k} = 1$.

Keywords and Phrases: Uniqueness, Meromorphic function, Sharing value.

2010 Mathematics Subject Classification: Primary 30D35.

1. Introduction and Main Results

In this paper, we use the standard notations and terms in the value distribution theory [1].

Let f(z) be a non constant meromorphic function on the complex plane C. Define $E(a, f) = \{z/f(z) - a = 0\}$, where a zero point with multiplicity m is counted m times in the set. If there zero points are only counted once, then we denote the set by $\overline{E}(a, f)$. Let k be a positive integer. Define $E_k(a, f) = \{z/f(z) - a = 0, \exists i, 1 \le i \le k, f^{(i)}(z) \ne 0\}$, where a zero point with multiplicity m is counted m times in the set.

Let f(z) and g(z) be two non constant meromorphic funtions. If E(a, f) = E(a, g), then we say that f(z) and g(z) share the value CM; if $\overline{E}(a, f) = \overline{E}(a, g)$, then we say that f(z) and g(z) share the value IM.

Additional, we denote by $N_{k)}(r, f)$ the counting function for poles of f(z) with multiplicity $\leq k$, and by $\overline{N}_{k)}$ the corresponding one for which multiplicity is not counted. Let $N_{(k}(r, f)$ be the counting function for poles of f(z) with multiplicity $\geq k$, and by $\overline{N}_{(k}(r, f)$ the corresponding one for which multiplicity is not counted. Set

$$N_k(r, f) = \overline{N}(r, f) + \overline{N}_{(2}(r, f) + \cdots + \overline{N}_{(k}(r, f)).$$

Similarly, we have the notation: $N_{k}(r, \frac{1}{f}), \overline{N}_{k}(r, \frac{1}{f}), N_{(k}(r, \frac{1}{f}), \overline{N}_{(k}(r, \frac{1}{f}), N_{k}(r, \frac{1}{f}))$. If $\overline{E}(1, f) = \overline{E}(1, g)$, we denote by $N_{11}(r, \frac{1}{f-1})$ the counting function for common simple 1-points of both f(z) and g(z) where multiplicity is not counted.

In 2011, H. Huang and B. Huang [10] extend the above result as follows.

Theorem A. Let f(z) and g(z) be two non-constant meromorphic functions, $k(\geq 3)$, $n(\geq 11)$ be two positive integers. If $E_k(1, f^n f') = E_k(1, g^n g')$, then either $f_{(z)} = c_1 e^{cz}$, $g_{(z)} = c_2 e^{-cz}$, where c_1, c_2, c are three constants, satisfying $(c_1 c_2)^{n+1} c^2 = -1$, or f = tg for a constant t such that $t^{n+1} = 1$.

Theorem B. Let f(z) and g(z) be two non constant meromorphic functions, $n(\geq 13)$ be a positive integer. If $E_2(1, f^n f') = E_2(1, g^n g')$, then the conclusion of Theorem A holds.

Theorem C. Let f(z) and g(z) be two non constant meromorphic functions, $n(\geq 19)$ be a positive integer. If $E_1(1, f^n f') = E_1(1, g^n g')$, then the conclusion of Theorem A holds.

In this paper, we will extend the above results as follows.

Theorem 1.1. Let f(z) and g(z) be two non-constant meromorphic functions, $k(\geq 3)$, $n(\geq 2k+9)$ be two positive integers. If $E_k(1, f^n f^{(k)}) = E_k(1, g^n g^{(k)})$, then either $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$, where c_1, c_2, c are three constants, satisfying $(-1)^k (c_1 c_2)^n c^{2k} = 1$, or f = tg for a constant t such that $t^{n+1} = 1$.

Theorem 1.2. Let f(z) and g(z) be two non constant meromorphic functions, $n(\geq 2k+11)$ be a positive integer. If $E_2(1, f^n f^{(k)}) = E_2(1, g^n g^{(k)})$, then the conclusion of Theorem 1.1 holds.

Theorem 1.3. Let f(z) and g(z) be two non constant meromorphic functions, $n(\geq 4k+15)$ be a positive integer. If $E_1(1, f^n f^{(k)}) = E_1(1, g^n g^{(k)})$, then the conclusion of Theorem 1.1 holds.

2. Some Lemmas

For the proof of our results, we need the following lemmas.

Lemma 2.1 ([7]). Let f be a non-constant meromorphic function and let $a_0, a_1, ..., a_n$ be finite complex numbers such that $a_n \neq 0$. Then

$$T(r, a_n f^n + a_{n-1} f^{n-1} + \dots + a_1 f' + a_0) = nT(r, f) + S(r, f).$$

Lemma 2.2 (see[4]). Let f be a non-constant meromorphic functions and a_1, a_2, a_3 be three distinct small meromorphic functions of f, then

$$T(r, f) \le \sum_{j=1}^{3} \bar{N}(r, \frac{1}{f - a_j}) + S(r, f).$$

Lemma 2.3. Let $f, g \in A, n \ge 2$ and k be a positive integer. If $f^n f^{(k)} g^n g^{(k)} = 1$, then $f = c_1 e^{cz}$ and $g = c_2 e^{-cz}$ where c_1, c_2 and c are constants such that $(-1)^k (c_1 c_2)^{n+1} c^{2k} = 1$.

Proof. From

$$f^n f^{(k)} g^n g^{(k)} = 1, (2.1)$$

we have

$$f(z) = e^{\alpha(z)}, \ g(z) = e^{\beta(z)},$$
 (2.2)

where $\alpha(z)$ and $\beta(z)$ are non constant entire functions.

Then $T(r, \frac{f'}{f}) = T(r, \frac{e^{\alpha}\alpha'}{e^{\alpha}}) = T(r, \alpha')$. We claim that $\alpha(z) + \beta(z) = c$, c is a constant. From (2.2), we know that either α and β are transcendental functions or both α and β are polynomials.

We deduce from (2.2) that

$$f^{(k)} = [(\alpha')^k + P_{k-1}(\alpha')]e^{\alpha}.$$

$$g^{(k)} = [(\beta')^k + Q_{k-1}(\beta')]e^{\beta}.$$

where $P_{k-1}(\alpha')$ and $Q_{k-1}(\beta')$ are differential polynomials in α' and β' of degree at most (k-1) respectively. Thus by (2.1) we obtain that

$$[(\alpha')^k + P_{k-1}(\alpha')][(\beta')^k + Q_{k-1}(\beta')]e^{(n+1)(\alpha+\beta)} = 1,$$
(2.3)

we deduce from (2.3) that $\alpha(z) + \beta(z) = c$, c is a constant. If k = 1, from (2.2) we get,

$$\alpha'\beta'e^{(n+1)(\alpha+\beta)} = 1. \tag{2.4}$$

Let $\alpha + \beta = \gamma$. If α and β are transcendental entire functions, then γ is not a constant and (2.4) implies that

$$\alpha'(\gamma' - \alpha')e^{(n+1)\gamma} = 1. \tag{2.5}$$

Since

$$T(r, \gamma') = m(r, \gamma') = m(r, \frac{e^{(n+1)\gamma'}}{e^{(n+1)\gamma}} \gamma')$$
$$= m(r, \frac{(e^{(n+1)\gamma})'}{e^{(n+1)\gamma}}) = S(r, e^{(n+1)\gamma}).$$

Thus (2.5) implies that

$$T(r, e^{(n+1)\gamma}) = T(r, \frac{1}{\alpha'(\gamma' - \alpha')})$$

$$\leq T(r, \alpha'(\gamma' - \alpha')) + O(1)$$

$$\leq 2T(r, \alpha') + S(r, e^{(n+1)\gamma}).$$

Which implies that

$$T(r, e^{(n+1)\gamma}) = O(T(r, \alpha')).$$

Thus $T(r, \gamma') = S(r, \alpha')$. In view of (2.5) and by Lemma 2.2, we get

$$T(r,\alpha') \leq \bar{N}(r,\alpha') + \bar{N}(r,\frac{1}{\alpha'}) + \bar{N}(r,\frac{1}{(\gamma'-\alpha')}) + S(r,\alpha').$$

Since α and β are transcendental entire function and in view of (2.5), we obtain $T(r,\alpha') \leq S(r,\alpha')$ and this implies that α' is a constant, which is a contradiction. Thus α and β are both polynomials and $\alpha(z) + \beta(z) = c$, for a constant c.

Hence from (2.3), we get

$$(\alpha')^{2k} = 1 + P_{2k-1}(\alpha'), \tag{2.6}$$

where $P_{2k-1}(\alpha')$ is a differential polynomial in α' of degree at most (2k-1). From (2.6), we have

$$2kT(r,\alpha') = T(r,(\alpha')^{2k}) = m(r,(\alpha')^{2k}) \le m(r,P_{2k-1}(\alpha')) + O(1)$$

$$= m(r,\frac{P_{2k-1}(\alpha')}{(\alpha')^{2k-1}}(\alpha')^{2k-1}) + O(1)$$

$$\le m(r,\frac{P_{2k-1}(\alpha')}{(\alpha')^{2k-1}}) + m(r,(\alpha')^{2k-1}) + O(1)$$

$$\le 2k - 1T(r,\alpha') + S(r,\alpha').$$

Therefore $T(r, \alpha') \leq S(r, \alpha')$. Which implies that α' is a constant. Thus $\alpha = cz + c_1$, $\beta = -cz + c_2$. By (2.2), we represent f and g as $f = c_1e^{cz}$ and $g = c_2e^{-cz}$. Where c_1, c_2 and c are constants such that $(-1)^k(c_1c_2)^{n+1}c^{2k} = 1$. This completes the proof of Lemma.

Lemma 2.4 ([8]). Let f be a non constant meromorphic function, k a positive integer, then

 $N(r, \frac{1}{f^{(k)}}) \le N(r, \frac{1}{f}) + k\bar{N}(r, f) + S(r, f).$

Lemma 2.5 ([9]). Let f and g be two non-constant meromorphic functions, and let k be a positive integer. If $E_k(1, f) = E_k(1, g)$, then one of the following cases must occur:

$$T(r,f) + T(r,g) \leq \overline{N}_{2}(r,f) + \overline{N}_{2}(r,\frac{1}{f}) + \overline{N}_{2}(r,g) + \overline{N}_{2}(r,\frac{1}{g})$$

$$+ \overline{N}_{2}(r,\frac{1}{f-1}) + \overline{N}_{2}(r,\frac{1}{g-1}) - N_{11}(r,\frac{1}{f-1})$$

$$+ N_{(k+1)}(r,\frac{1}{f-1}) + N_{(k+1)}(r,\frac{1}{g-1}) + S(r,f) + S(r,g).$$

$$(2.7)$$

$$f = \frac{(b+1)g + (a-b-1)}{bg + (a-b)},$$
(2.8)

where $a(\neq 0)$, b are two constants.

Lemma 2.6. Let f and g be two non constant meromorphic functions, $n \ge 2k + 5$ be a positive integer. Set

$$F = f^n f^{(k)}$$
 $G = g^n g^{(k)} = 1$,

if

$$f = \frac{(b+1)G + (a-b-1)}{bG + (a-b)},$$
(2.9)

where $a(\neq 0)$, b are two constants, then $f(z) = c_1 e^{cz}$, $g(z) = c_2 e^{-cz}$, where c_1, c_2, c_3 are three constants, satisfying $(-1)^k (c_1 c_2)^n c^{2k} = 1$,

Proof. By Lemma 2.1, we get

$$T(r,F) = T(r,f^{n}f^{(k)}) \le T(r,f^{n}) + T(r,f^{(k)})$$

$$\le nT(r,f) + T(r,f) + S(r,f)$$

$$\le (n+1)T(r,f) + S(r,f),$$
(2.10)

$$\begin{split} nT(r,f) &= T(r,f^n) + S(r,f) \\ &= N(r,f^n) + m(r,f^n) + S(r,f) \\ &\leq N(r,f^nf^{(k)}) - N(r,f^{(k)}) + m(r,f^nf^{(k)}) + mN(r,\frac{1}{f^{(k)}}) + S(r,f) \\ &\leq T(r,f^nf^{(k)}) + T(r,f^{(k)}) - N(r,f^{(k)}) - N(r,\frac{1}{f^{(k)}}) + S(r,f) \\ &\leq T(r,F) + T(r,f) - N(r,f) - N(r,\frac{1}{f}) - k\overline{N}(r,f) + S(r,f). \end{split}$$

So

$$T(r,F) \ge (n-1)T(r,f) + N(r,f) + N(r,\frac{1}{f}) + k\overline{N}(r,f) + S(r,f).$$
 (2.12)

Thus, by (2.10) and (2.11), we get

$$S(r, F) = S(r, f).$$

Similarly, we get

$$T(r,G) \ge (n-1)T(r,g) + N(r,g) + N(r,\frac{1}{q}) + k\overline{N}(r,g) + S(r,g).$$
 (2.13)

Also S(r,G) = S(r,g). It is clear that the inequality $T(r,f) \leq T(r,g)$ or $T(r,g) \leq T(r,f)$ holds for a set of infinite measure of r. Without loss of generality, we may suppose that $T(r,f) \leq T(r,g)$, holds for $r \in I$, where I is a set with infinite measure. Next we consider five cases.

Case 1. $a \neq b, b \neq 0, -1$. If $a - b - 1 \neq 0$, then by (2.9) we known:

$$\overline{N}(r, \frac{1}{F}) = \overline{N}(r, \frac{1}{G + \frac{(a-b-1)}{b+1}}).$$

By the Nevanlinna second fundamental theorem and Lemma 2.4, we have

$$T(r,G) \leq \overline{N}(r,G) + \overline{N}(r,\frac{1}{G}) + \overline{N}(r,\frac{1}{G + \frac{(a-b-1)}{b+1}}) + S(r,G)$$

$$= \overline{N}(r,G) + \overline{N}(r,\frac{1}{G}) + \overline{N}(r,\frac{1}{F}) + S(r,g)$$

$$\leq \overline{N}(r,g) + \overline{N}(r,\frac{1}{g}) + N(r,\frac{1}{g^{(k)}}) + \overline{N}(r,\frac{1}{f}) + N(r,\frac{1}{f^{(k)}}) + S(r,g)$$

$$\leq \overline{N}(r,g) + \overline{N}(r,\frac{1}{g}) + N(r,\frac{1}{g}) + k\overline{N}(r,g) + \overline{N}(r,\frac{1}{f}) + N(r,\frac{1}{f}) + k\overline{N}(r,f) + S(r,g)$$

$$\leq (k+1)\overline{N}(r,g) + \overline{N}(r,\frac{1}{g}) + N(r,\frac{1}{g}) + k\overline{N}(r,f) + \overline{N}(r,\frac{1}{f}) + N(r,\frac{1}{f}) + S(r,g)$$

$$\leq (k+3)T(r,g) + (k+2)T(r,f) + S(r,g).$$

By $n \ge 2k + 5$ and (2.13), we get $T(r,g) \le S(r,g)$, for $r \in I$, a contradiction. If a - b - 1 = 0, by (2.9) we can obtain $F = \frac{(b+1)G}{bG+1}$ we see that:

$$\overline{N}(r,F) = \overline{N}(r,\frac{1}{G+\frac{1}{h}}),$$

combining the Nevanlinna second fundamental theorem and Lemma 2.4, we have

$$T(r,G) \leq \overline{N}(r,G) + \overline{N}(r,\frac{1}{G}) + \overline{N}(r,\frac{1}{G+\frac{1}{b}}) + S(r,G)$$

$$= \overline{N}(r,G) + \overline{N}(r,\frac{1}{G}) + \overline{N}(r,F) + S(r,g)$$

$$\leq \overline{N}(r,g) + \overline{N}(r,\frac{1}{g}) + N(r,\frac{1}{g^{(k)}}) + \overline{N}(r,f) + S(r,g)$$

$$\leq \overline{N}(r,g) + \overline{N}(r,\frac{1}{g}) + N(r,\frac{1}{g}) + k\overline{N}(r,g) + \overline{N}(r,f) + S(r,g)$$

$$\leq (k+3)T(r,g) + T(r,f) + S(r,g).$$

By $n \ge (2k+5)$ and (2.13), we get $T(r,g) \le S(r,g), r \in I$ a contradiction.

Case 2. $a \neq b, b \neq -1$. So $F = \frac{a}{(a+1)-G}$. We can get $\overline{N}(r, F) = \overline{N}(r, \frac{1}{G-(a+1)})$. Similarly as Case 1, it is impossible.

Case 3. $a \neq b, b \neq 0$. So $F = \frac{G + (a - 1)}{a}$. If a - 1 = 0, then $F \equiv G$, So $f^n f^{(k)} = g^n g^{(k)}$.

Case 4. $a \neq b, b \neq 0, -1$, from (2.9) we can get $F = \frac{(b+1)G-1}{bG}$, $\overline{N}(r, F) = \overline{N}(r, \frac{1}{G})$. Similarly as Case 1, it is impossible. Since $a \neq 0$, now we consider the following case.

Case 5. a = b = -1, it yields $FG \equiv 1$, that is $f^n f^{(k)} g^n g^{(k)} = 1$. By the Lemma 2.3, we can get $f(z) = c_1 e^{(cz)}$, $g(z) = c_2 e^{(-cz)}$, where c_1, c_2, c are three constants satisfying $(-1)^k (c_1 c_2)^{n+1} c^{2k} = 1$. Now the proof of Lemma 2.6 is completed.

3. Proof of the Theorems

Proof of Theorem 1.1. Noticing that $k \geq 3$, we have

$$\overline{N}(r, \frac{1}{F-1}) + \overline{N}(r, \frac{1}{G-1}) - N_{11}(r, \frac{1}{F-1}) + \overline{N}_{(k+1)}(r, \frac{1}{F-1})
+ \overline{N}_{(k+1)}(r, \frac{1}{G-1}) \le \frac{1}{2}N(r, \frac{1}{F-1}) + \frac{1}{2}N(r, \frac{1}{G-1})
\le \frac{1}{2}T(r, F) + \frac{1}{2}T(r, G) + O(1).$$

By Lemma 2.5, we can get

$$T(r,F) + T(r,G) < 2\left(N_2(r,\frac{1}{F}) + N_2(r,F) + N_2(r,\frac{1}{G}) + N_2(r,G)\right) + S(r,F) + S(r,G)$$

$$= 2\left(N_2(r,\frac{1}{F}) + N_2(r,F) + N_2(r,\frac{1}{G}) + N_2(r,G)\right) + S(r,f) + S(r,g).$$
(3.1)

Because

$$N_{2}(r, \frac{1}{F}) + N_{2}(r, F) \leq N_{2}(r, \frac{1}{f^{n}f^{(k)}}) + N_{2}(r, f^{n}f^{(k)})$$

$$\leq 2\overline{N}(r, \frac{1}{f}) + N(r, \frac{1}{f^{(k)}}) + 2\overline{N}(r, f),$$
(3.2)

and

$$N_2(r, \frac{1}{G}) + N_2(r, G) \le 2\overline{N}(r, \frac{1}{g}) + N(r, \frac{1}{g^{(k)}}) + 2\overline{N}(r, g).$$
 (3.3)

By (3.1)-(3.3) and Lemma 2.4, we can get

$$\begin{split} T(r,F) + T(r,G) &\leq 2 \left(2\overline{N}(r,\frac{1}{f}) + 2\overline{N}(r,f) + N(r,\frac{1}{f^{(k)}}) + 2\overline{N}(r,\frac{1}{g}) \right. \\ &+ 2\overline{N}(r,g) + N(r,\frac{1}{g^{(k)}}) + S(r,f) + S(r,g) \\ &= 4\overline{N}(r,\frac{1}{f}) + 4\overline{N}(r,f) + 2N(r,\frac{1}{f^{(k)}}) + S(r,f) \\ &+ 4\overline{N}(r,\frac{1}{g}) + 4\overline{N}(r,g) + 2N(r,\frac{1}{g^{(k)}}) + S(r,g) \\ &\leq 4\overline{N}(r,\frac{1}{f}) + 4\overline{N}(r,f) + 2\left[N(r,\frac{1}{f}) + k\overline{N}(r,f)\right] + S(r,f) \end{split}$$

$$+4\overline{N}(r,\frac{1}{g})+4\overline{N}(r,g)+2\left[N(r,\frac{1}{g})+k\overline{N}(r,g)\right]+S(r,g),$$

we write the above equation as

$$T(r,F) + T(r,G) \le 4\overline{N}(r,\frac{1}{f}) + 4\overline{N}(r,f) + 2N(r,\frac{1}{f}) + 2k\overline{N}(r,f) + S(r,f)$$

$$+ 4\overline{N}(r,\frac{1}{g}) + 4\overline{N}(r,g) + 2N(r,\frac{1}{g}) + 2k\overline{N}(r,g) + S(r,g)$$

$$\le (2k+10)T(r,f) + (2k+10)T(r,g) + S(r,f) + S(r,g)$$

$$(n+1)[T(r,f) + T(r,g)] \le (2k+10)[T(r,f) + T(r,g)] + S(r,f) + S(r,g)$$

$$(n-2k-9)(T(r,f) + T(r,g)) \le S(r,f) + S(r,g).$$

By $n \ge 2k + 9$ and (2.12),(2.13) we obtain $T(r, f) + T(r, g) \le S(r, f) + S(r, g)$, which is impossible. Therefore, by Lemma 2.5

$$f = \frac{(b+1)g + (a-b-a)}{bg + (a-b)},$$

where $a(\neq 0)$, b are two constants, it follows by Lemma 2.6 that $f(z) = c_1 e^{(cz)}$, $g(z) = c_2 e^{(-cz)}$, where c_1, c_2, c are three constants satisfying $(-1)^k (c_1 c_2)^{n+1} c^{2k} = 1$. The proof of Theorem 1.1 is complete.

Proof of Theorem 1.2. We can see easily:

$$\begin{split} \overline{N}(r, \frac{1}{F-1}) + \overline{N}(r, \frac{1}{G-1}) - N_{11}(r, \frac{1}{F-1}) + \frac{1}{2} \overline{N}_{(2)}(r, \frac{1}{F-1}) \\ + \frac{1}{2} \overline{N}_{(2)}(r, \frac{1}{G-1}) &\leq \frac{1}{2} N(r, \frac{1}{F-1}) + \frac{1}{2} N(r, \frac{1}{G-1}) \\ &\leq \frac{1}{2} T(r, F) + \frac{1}{2} T(r, G) + S(r, f) + S(r, g). \end{split}$$

By Lemma 2.5, we can get

$$T(r,F) + T(r,G) \le 2 \left[N_2(r,\frac{1}{F}) + N_2(r,F) + N_2(r,\frac{1}{G}) + N_2(r,G) \right] + \overline{N}_{(3)}(r,\frac{1}{F-1}) + \overline{N}_{(3)}(r,\frac{1}{G-1}) + S(r,f) + S(r,g).$$
(3.4)

Considering

$$\overline{N}_{(3)}(r, \frac{1}{F-1}) \leq \frac{1}{2}N(r, \frac{F}{F'}) = \frac{1}{2}N(r, \frac{F'}{F}) + S(r, f)
\leq \frac{1}{2}\overline{N}(r, \frac{1}{F}) + \frac{1}{2}\overline{N}(r, F) + S(r, f)
\leq \frac{1}{2}[\overline{N}(r, \frac{1}{f}) + N(r, \frac{1}{f}) + \overline{N}(r, f)] + S(r, f)
\leq 2T(r, f) + S(r, f).$$
(3.5)

Similarly, we can get

$$\overline{N}_{(3)}(r, \frac{1}{F-1}) \le 2T(r, f) + S(r, f).$$
 (3.6)

From (3.4)-(3.6) we can get

$$T(r,F) + T(r,G) \le 2 \left[N_2(r, \frac{1}{f^n f^{(k)}}) + N_2(r, f^n f^{(k)}) + N_2(r, \frac{1}{g^n g^{(k)}}) + N_2(r, g^n g^{(k)}) \right]$$

$$+ 2T(r,f) + 2T(r,g) + S(r,f) + S(r,g)$$

$$\le 2 \left[2\overline{N}(r, \frac{1}{f}) + N(r, \frac{1}{f^{(k)}}) + 2\overline{N}(r,f) + 2\overline{N}(r, \frac{1}{g}) + N(r, \frac{1}{g^{(k)}}) + 2\overline{N}(r,g) \right]$$

$$+ 2T(r,f) + 2T(r,g) + S(r,f) + S(r,g),$$

$$\begin{split} &T(r,F) + T(r,G) \leq 4\overline{N}(r,\frac{1}{f}) + 2N(r,\frac{1}{f^{(k)}}) + 4\overline{N}(r,f) + 4\overline{N}(r,\frac{1}{g}) \\ &+ 2N(r,\frac{1}{g^{(k)}}) + 4\overline{N}(r,g) + 2T(r,f) + 2T(r,g) + S(r,f) + S(r,g) \\ &\leq 4\overline{N}(r,\frac{1}{f}) + 2N(r,\frac{1}{f}) + 2k\overline{N}(r,f) + 4\overline{N}(r,f) + 4\overline{N}(r,\frac{1}{g}) \\ &+ 2N(r,\frac{1}{g}) + 2k\overline{N}(r,g) + 4\overline{N}(r,g) + 2T(r,f) + 2T(r,g) + S(r,f) + S(r,g) \\ &\leq (2k+12)T(r,f) + (2k+12)T(r,g) + S(r,f) + S(r,g) \\ &(n+1)[T(r,f) + T(r,g)] \leq (2k+12)[T(r,f) + T(r,g)] + S(r,f) + S(r,g) \\ &(n-2k-11)[T(r,f) + T(r,g)] \leq S(r,f) + S(r,g). \end{split}$$

By $n \ge 2k+11$ and (2.12),(2.13), we can get $T(r,f)+T(r,g) \le S(r,f)+S(r,g)$ it is impossible.

The proof of Theorem 1.2 is complete.

Proof of Theorem 1.3. Since

$$\overline{N}(r, \frac{1}{F-1}) + \overline{N}(r, \frac{1}{G-1}) - N_{11}(r, \frac{1}{F-1}) \le \frac{1}{2}N(r, \frac{1}{F-1}) + \frac{1}{2}N(r, \frac{1}{G-1}) \\
\le \frac{1}{2}T(r, F) + \frac{1}{2}T(r, G) + S(r, f) + S(r, g).$$

We can see easily from Lemma 2.5 that:

$$T(r,F) + T(r,G) \leq 2 \left[N_2(r,\frac{1}{F}) + N_2(r,F) + N_2(r,\frac{1}{G}) + N_2(r,G) + \overline{N}_{(2}(r,\frac{1}{F-1}) + \overline{N}_{(2}(r,\frac{1}{G-1})) \right] + S(r,F) + S(r,G).$$

$$= 2 \left[N_2(r,\frac{1}{F}) + N_2(r,F) + N_2(r,\frac{1}{G}) + N_2(r,G) + \overline{N}_{(2}(r,\frac{1}{F-1}) + \overline{N}_{(2}(r,\frac{1}{G-1})) \right] + S(r,f) + S(r,g).$$

$$(3.7)$$

Considering

$$\overline{N}_{(2)}(r, \frac{1}{F-1}) \leq N(r, \frac{F}{F'}) = N(r, \frac{F'}{F}) + S(r, f)$$

$$\leq \overline{N}(r, F) + \overline{N}(r, \frac{1}{F}) + S(r, f)$$

$$\leq N(r, \frac{1}{f}) + N(r, \frac{1}{f^{(k)}}) + \overline{N}(r, f) + S(r, f)$$

$$\leq (k+3)T(r, f) + S(r, f).$$
(3.8)

Similarly we can get

$$\overline{N}_{(2)}(r, \frac{1}{G-1}) \le (k+3)T(r,g) + S(r,g),$$
 (3.9)

from (3.7)-(3.9) we can get

$$\begin{split} T(r,F) + T(r,G) &\leq 2[2\overline{N}(r,\frac{1}{f}) + N(r,\frac{1}{f^{(k)}}) + 2\overline{N}(r,f) + 2\overline{N}(r,\frac{1}{g}) + N(r,\frac{1}{g^{(k)}}) \\ &+ 2\overline{N}(r,g) + (k+3)T(r,f) + (k+3)T(r,g)] + S(r,f) + S(r,g) \\ &\leq (4k+16)T(r,f) + (4k+16)T(r,g) + S(r,f) + S(r,g) \\ &(n+1)[T(r,f) + T(r,g)] \leq (4k+16)[T(r,f) + T(r,g)] + S(r,f) + S(r,g) \\ &(n-4k-15)[T(r,f) + T(r,g)] \leq S(r,f) + S(r,g). \end{split}$$

Since $n \ge 4k+16$ and (2.12), (2.13), we can get $T(r, f)+T(r, g) \le S(r, f)+S(r, g)$, it is impossible.

The proof of Theorem 1.3 is complete.

References

- [1] L. Yang, Value Distribution Theory, Springer Verlag, Berlin, 1993.
- [2] Y. F. Wang and M. L. Fang, Picard values and normal families of meromorphic functions with multiple zeros, Acta Mathematica Sinica (NS), Vol. 14, No 1, 1998, pp.17-26.
- [3] H. H. Chen, Yosida function and Picard values of integral functions and their derivatives, Bulletin of the Australian Mathematical Society, Vol. 54, 1996, pp. 373-381.
- [4] M. L. Fang, Uniqueness and value sharing of entire functions, Computers and Mathematics with Applications, Vol. 44, 2002, pp. 823-831.
- [5] Harina P. Waghamore and Rajeshwari S., Value sharing and uniqueness of entire functions, Elec. J. MAth. An and Appl., Vol 5, No 1, Jan-2017, pp 88-96.
- [6] Harina P. Waghamore and Rajeshwari S., Uniqueness and value sharing problems in class A of meromorphic functions, Journal of Applied Mathematics and Informatics, Vol. 35, No 1-2, Jan 2017.
- [7] C. C. Yang, On Deficiencies of differential polynomials, Mathematische Zeitschrift, Vol. 125, No. 2, 1972, pp. 107-112.
- [8] H. X. Yi and C. C. Yang, Uniqueness theory of meromorphic functions, Science press, Beijing, 1995.
- [9] C. Y. Fang and M. L. Fang, Uniqueness theory of meromorphic functions and differential polynomials, Computer and Mathematics with Applications, Vol. 44, 2002, pp. 607-617.
- [10] H. Huang, B. Huang, Uniqueness of meromorphic functions concerning differential monomials, Applied Mathematics, Vol. 2, 2011, pp. 230-235.